Electrical Engineering (EE)
Courses
EE 101. Introduction to Electrical Engineering. 1 Credit.
An introduction to the electrical engineering discipline. Recent technologies and practices in electronics, computers, controls, power systems, robotics, communication, and microwaves. F,S.
EE 201. Introduction to Digital Electronics. 3 Credits.
Introduction to the fundamentals of digital circuit design. Logic gates; Boolean algebra; Karnaugh maps; Mathematical operations; Flip Flops; Counters. Corequisite: EE 201L. F,S.
EE 201L. Digital Electronics Laboratory. 1 Credit.
Introduction to design and implementation of digital electronic circuits. Corequisite: EE 111. F,S.
EE 206. Circuit Analysis. 3 Credits.
Introduces the foundations of electrical engineering, applying these concepts in developing the fundamentals of energy conversion, electronics and circuit theory. Prerequisite: MATH 165 with a grade of C or better. Corequisite: EE 221L. F.
EE 206L. Circuits Laboratory I. 1 Credit.
Introduction to methods of experimental circuit analysis and to proper uses of laboratory equipment. Prerequisite: EE major should be declared. Corequisite: EE 206. F,SS.
EE 304. Computer Aided Measurement and Controls. 3 Credits.
The principles of the use of a computer in a measurement and control environment are presented. Software is designed to drive interfaces to perform measurement and control algorithms. The software and concepts presented are evaluated in a laboratory environment. Prerequisite: Electrical Engineering major and MATH 165. F.
EE 313. Linear Electric Circuits. 3 Credits.
Linear electric circuits in the steady state and transient conditions; two-port circuits; Fourier Series single and polyphase systems. Prerequisite: Electrical Engineering major and EE 206 with a grade of C or better. Corequisite: EE 313L. S.
EE 313L. Circuits Laboratory II. 1 Credit.
Experimental circuit analysis and proper uses of laboratory equipment. Prerequisite: Electrical Engineering major and EE 206L. Corequisite: EE 313. S,SS.
EE 314. Signals and Systems. 3 Credits.
Passive filters; Laplace transform applications; Fourier transform; Z-transform; Nyquist sampling theorem; other topics as time permits (state variables; introduction to control and communications theory; discrete Fourier transform). Prerequisite: EE 313. Corequisite: MATH 266 and EE 314L. F.
EE 314L. Signal and Systems Laboratory. 1 Credit.
In this laboratory course, students will conduct simulations and experiments related to theory covered in EE 314. The topics include implementation of passive filters, Laplace transform, and z-transform. Corequisite: EE 314. F.
EE 316. Electric and Magnetic Fields. 3 Credits.
Field produced by simple distributions of electric charges and magnetic poles, field mapping and application to engineering problems. Prerequisite: EE 206 with a grade of C or better. Corequisite: MATH 266. F.
EE 318. Engineering Data Analysis. 3 Credits.
This course will provide undergraduate electrical engineering students with an understanding of the principles of engineering data analysis using basic probability theory and basic statistics theory. Students will have the opportunity to apply these concepts to actual engineering applications and case studies. Prerequisite: EE 206 with a grade of C or better. Corequisite: EE 313. F.
EE 321. Electronics I. 3 Credits.
Fundamentals of semiconductors, nonlinear discrete components such as diodes and transistors, and integrated circuits; analysis and synthesis of simple electronic circuits, including amplifiers. Prerequisite: EE 313. Corequisite: EE 321L. F.
EE 321L. Electronics Laboratory I. 1 Credit.
Practical electronics application and design using theory studied in concurrent third year electrical engineering courses. Prerequisite: EE 313L. Corequisite: EE 321. F.
EE 401. Electric Drives. 3 Credits.
A study of variable speed drives and their electronic controls; analysis and synthesis of power electronics through computer simulations and laboratory implementations. Prerequisite: EE 314. Corequisite: EE 401L. S.
EE 401L. Electric Drives Laboratory. 1 Credit.
The course provides the basic knowledge required for the usage and the design of the most common electrical drives. This lab focuses on the Electric Drives and their control in a real time environment using dSPACE and/or similar digital signal processing based methods and simulations. Corequisite: EE 401. S.
EE 405. Control Systems I. 3 Credits.
Mathematical modeling and dynamic response of linear control systems; stability analysis; design of linear controllers using the root locus and frequency response techniques. Prerequisite: EE 314 and MATH 266. Corequisite: EE 405L,. S.
EE 405L. Control Systems Laboratory. 1 Credit.
Experiments and simulations related to theory discussed in EE 405 are implemented in this laboratory course. The topics included mathematical modeling and dynamic response of linear systems; stability analysis; and design of controllers. Corequisite: EE 405. S.
EE 409. Distributed Networks. 3 Credits.
Fundamentals of transmission lines. Prerequisite: EE 313 and EE 316. S.
EE 411. Communications Engineering. 3 Credits.
Mathematical definition of random and deterministic signals and a study of various modulation systems. Prerequisite: EE 314. On demand.
EE 421. Electronics II. 3 Credits.
Analysis of electronic circuits and systems using discrete components and integrated circuits, digital circuits, active filters, and power amplifiers. Prerequisite: EE 314 and EE 321. Corequisite: EE 421L. S.
EE 421L. Electronics Lab II. 1 Credit.
Practical electronics application and design using theory studied in concurrent third year electrical engineering courses. Prerequisite: EE 321L. Corequisite: EE 421. S.
EE 423. Power Systems I. 3 Credits.
Electric power systems operation, control and economic analysis. Prerequisite: EE 313. On demand.
EE 424. Electronic Circuits. 3 Credits.
Principles, applications, and design of electronic equipment studied from viewpoint of complete systems. Prerequisite: EE 321. On demand.
EE 428. Robotics Fundamentals. 3 Credits.
Fundamentals of robotic systems: modeling, analysis, design, planning, and control. The project provides hands-on experience with robotic systems. Prerequisite: MATH 266 or consent of instructor. On demand.
EE 430. Introduction to Antenna Engineering. 3 Credits.
Review of vector analysis and Maxwell's equations, wave propagation in unbounded regions, reflection and refraction of waves, fundamental antenna concepts, wire-and aperture-type antennas, wave and antenna polarization, antenna measurements, and computer-aided analysis. Prerequisite: EE 409 or consent of instructor. On demand.
EE 434. Microwave Engineering. 3 Credits.
Review of transmission lines and plane waves, analysis of microwave networks and components using scattering matrices, analysis of periodic structures, transmission and cavity type filters, high frequency effects, microwave oscillators, amplifiers, and microwave measurement techniques. Prerequisite: EE 409 or consent of instructor. On demand.
EE 451. Computer Hardware Organization. 3 Credits.
The study of complete computer systems including digital hardware interconnection and organization and various operation and control methods necessary for realizing digital computers and analog systems. Prerequisite: EE 201 and EE 304; or consent of instructor. On demand.
EE 452. Embedded Systems. 3 Credits.
A study of microcontroller hardware and software, with an emphasis on interfacing the microcontroller with external electronic devices such as transceivers, sensors, and actuators for communications and control within an embedded system. Prerequisite: EE 201, EE 304 and EE 321. Corequisite: EE 452L. S.
EE 452L. Embedded Systems Design Laboratory. 1 Credit.
This introductory laboratory course provides students with the hands-on activities in order to learn and gain more experiences in designing embedded systems (smart systems) using microcontrollers, actuators, and sensors. Prerequisite: EE 201 and EE 304 or consent of instructor. Prerequisite or Corequisite: EE 452. S.
EE 456. Digital Image Processing. 3 Credits.
Digital image retrieval, modification, enhancement, restoration, and storage. Image transformation and computer vision. The associated laboratory provides hands-on experiences. Prerequisite: EE 304 and EE 314. On demand.
EE 480. Senior Design I. 3 Credits.
First course in the two-semester capstone design experience for the electrical engineering undergraduate degree, emphasizing design methodologies, advanced communication, and teamwork. Student teams will select an electronic system to design, capture end-user requirements, and perform component trade studies, resulting in an oral and written critical design review at the end of the semester. Prerequisite: EE 421 and two out of the four following classes: EE 401, EE 405, EE 409, EE 452. F.
EE 481. Senior Design II. 3 Credits.
Second course in the two-semester capstone design experience for the electrical engineering undergraduate degree, emphasizing design methodologies, oral communication, and teamwork. Student teams will be required to build and test a prototype of the electronic systems designed in EE 480 Senior Design I, and they will prepare written reports and deliver oral presentations on their design choices with critique by the instructor. EE 481 Senior Design II meets the Essential Studies Special Emphasis requirement for Oral Communication (O). Prerequisite: EE 480. S.
EE 489. Senior Honors Thesis. 1-8 Credits.
Supervised independent study culminating in a thesis. Repeatable to 9 credits. Repeatable to 9.00 credits. F,S,SS.
EE 490. Electrical Engineering Problems. 1-9 Credits.
Repeatable to maximum of 9 credits. Prerequisite: Approval by departmental faculty member under whom the electrical engineering problem is studied. Repeatable to 9.00 credits. F,S.
EE 505. Control Systems II. 3 Credits.
Advanced topics in control systems including nonlinear systems, robust control, optimal control, and pole placement techniques; selective topics from the state of the art. Prerequisite: EE 405.
EE 506. Digital Control Systems. 3 Credits.
Digital systems representation, analysis and simulation; Z-transform; digital controllers design and realization; microprocessor based controllers. Prerequisite: EE 405.
EE 508. Intelligent Decision Systems. 3 Credits.
Systems and networks will be designed to work in an uncertain environment. Systems will be optimized using Neural Networks and Fuzzy Logic concepts. Prerequisite: EE 314 or consent of instructor.
EE 511. Power Electronics. 3 Credits.
Principles of power electronics switching control circuits. Including AC/DC, DC/DC, DC/AC converters, their harmonics and filtering techniques, and their application in switching power supplies, electric drives, renewable energy systems, etc. Prerequisite: EE 321 or consent of instructor. On demand.
EE 512. Wireless Communications. 3 Credits.
Key concepts, underlying principles, and practical applications of ever-growing wireless and cellular communication technologies. Prerequisite: EE 411 or consent of instructor.
EE 521. Digital Signal Processing. 3 Credits.
Modern methods of digital signal processing will be studied. Techniques that will be used include the recursive and nonrecursive discrete-time filters and the Fourier Transform. Prerequisite: EE 314.
EE 522. Renewable Energy Systems. 3 Credits.
This course will provide engineering students with an understanding of the principles of renewable energy conversion systems. Emphasis is on wind, photo-voltaic, hydrogen fuel, and fuel cell energy conversion and storage systems, along with their associated design and control issues.
EE 523. Power Systems II. 3 Credits.
Electric power systems analysis and control. Power flow; system response and stability; voltage and frequency control; computer methods in system analysis. Prerequisite: EE 423.
EE 524. Application Specific Integrated Circuit (ASIC) Design. 3 Credits.
To gain an historic perspective of ASIC Design. To familiarize students with the existing IC technology and their attributes. To recognize basic fabrication process, layout, circuit extraction and performance analysis. To understand CAD tools, hardware, systems engineering, and operational issues. Prerequisite: EE 421 or consent of instructor.
EE 526. Engineering Systems Reliability. 3 Credits.
This course teaches the basics of reliability engineering concepts and techniques applicable to all engineering disciplines including electrical, mechanical, chemical, geological, aeronautical, and civil. To benefit the most from this course, some basic knowledge of probability and statistics would be helpful but is not necessary as the required background and tools are presented and discussed in the class. Prerequisite: Consent of the instructor. On demand.
EE 532. Antenna Theory. 3 Credits.
Physical principles underlying antenna behavior and design as applied to antennas. Prerequisite: EE 316 or consent of instructor.
EE 534. Advanced Wireless Communications Engineering. 3 Credits.
A combination of theory and practice underlying principles and practical applications of Wireless Communications. Prerequisite: Consent of Instructor. On demand.
EE 536. Optical Fiber Communications. 3 Credits.
Propagation in optical fibers, optical receivers, amplifiers, detectors, sources, transmission links, noise consideration, optical fiber communication systems, applications and future developments. Prerequisite: EE 434 or consent of instructor.
EE 544. Advanced Microwave Engineering. 3 Credits.
Analysis of passive microwave components including power dividers, resonators, filters, ferromagnetic and MEMs components. On demand. Prerequisite: EE 409 and EE 434, or consent of instructor. On demand.
EE 552. Advanced Embedded Systems Design. 3 Credits.
This course provides students with cutting-edge techniques in the design and implementation of advanced embedded systems that involve analog/digital conversion, interrupts, timers, CCP modules, and parallel/serial communications. Prerequisite: EE 452 or consent of instructor.
EE 564. Computational Imaging. 3 Credits.
Computational imaging is an interdisciplinary field in computer vision, optics, imaging, and computation. This course will discuss the state of the art in computational imaging. We will first introduce the basics of optics, image formation, human vision, digital camera and digital imaging processing. Then we will continue to learn about compressive imaging, light-field imaging, time-of-flight imaging, computational microscopy and computational display. We will also discuss the emerging research topics such as ultrahigh speed imaging and deep imaging in scattered media. The course is suitable for graduate and advanced undergraduate students. This course is designed to bring together students with various backgrounds in physics, mathematics and computing. There is a strong hands-on research component to the course expecting the students to produce a written report at the end and present their results to the class. Prerequisite: Knowledge of Signals & Systems including discrete Fourier Transforms. F.
EE 595. Design Project. 3-6 Credits.
A three to six credit course of engineering design experience involving individual effort and a formal written report. Repeatable to 6 credits. Prerequisite: Restricted to Master of Engineering student candidates and subject to approval by the student's advisor. Repeatable to 6.00 credits.
EE 601. Analytical Foundations of Cyber Security. 3 Credits.
This course provides a solid mathematical foundation for further study in cyber security. Topics include: Set Theory, Discrete Functions and Relations, Permutations and Combinations, Logic and Boolean Algebra, Systems of Linear Equations, Finite Dimensional Vector Spaces, Linear Transformations, Determinants, Matrices, Eigenvalues, Eigenvectors, and Diagonalizability. Prerequisite: Students enrolled/admitted in the MS in Cyber Security program. F,S,SS.
EE 602. Computing Foundations of Cyber Security. 3 Credits.
This course provides a solid programming foundation for further study in cyber security. An introduction to the Python programming language; data structures, analysis of algorithms, and software design topics will be discussed. Prerequisite: Students enrolled/admitted in the MS in Cyber Security program. Prerequisite: Students enrolled/admitted in the MS in Cyber Security program. F,S,SS.
EE 611. Emerging Threats and Defenses. 3 Credits.
Cyber-attacks are a serious economic and security threat. To combat both immediate and future dangers, businesses and governments are investing in cyber security. Understanding trends in cyber-security and how machine-learning techniques defenses can respond to threats is a critical component of protecting networks, infrastructure and users. This course explores the growing challenges of securing sensitive data, networks to defend against malicious acts. Prerequisite: Consent of the instructor. On demand.
EE 614. Applied Cryptography. 3 Credits.
Modern cryptography algorithms are necessary for protection of data storage and communication streams from disclosure and manipulation of information to distrusted or malicious parties. This course explains the inner workings of cryptographic primitives and how to implement them. Assignments will be both theoretical and application based. Experience with C/ C++ programming is required. Prerequisite: Consent of the instructor. On demand.
EE 623. Introduction to Smart Grid I. 3 Credits.
This course is an in-depth study of the ways in which information and communication technologies (ICT) are being deployed to modernize the electric energy infrastructure, i.e. "Smart Grid." In this course we will dene Smart Grid as the use of ICT (in combination with power electronics and policy) to make electricity cleaner, less costly, and more reliable. Prerequisite: EE 313 or graduate student standing. On demand.
EE 624. Introduction to Smart Grid II. 3 Credits.
This is the next sequence of smartgrid course is an in-depth study of the ways in which information and communication technologies (ICT) are being deployed to modernize the electric energy infrastructure, i.e. "Smart Grid." In this course we will dene Smart Grid as the use of ICT (in combination with power electronics and policy) to make electricity cleaner, less costly, and more reliable. Prerequisite: EE 623. On demand.
EE 640. Communication Protocols: OSI model and TCP/IP Protocol Stack. 3 Credits.
Communication between computers and networks uses protocols. This course introduces students to the OSI model and TCP/IP protocol stack. Functions of each layer in the network are explained and their security analyzed. Prerequisite: Consent of the instructor. On demand.
EE 740. Intrusion Detection Algorithms. 3 Credits.
With the increasing number of cyber-attacks, intrusion detection systems become crucial tools for detecting anomalies and enhancing computers and networks security. This course exposes students to the existing intrusion detection techniques and algorithms, including signature-based and anomaly-based approaches. Prerequisite: Consent of the instructor. On demand.
EE 750. Internet of Things and Security. 3 Credits.
Internet of Things (IoT) is an emerging field where computing devices are interconnected through the existing internet infrastructure. The IoT has changed the world with new innovative products such as autonomous vehicles, smart home, and smart wearables devices. This course explains the concept of IoT, its applications, networks and communication architectures, and security threats. Prerequisite: Consent of the instructor. On demand.
EE 751. Wireless Sensor Networks. 3 Credits.
This class provides a hands-on introduction to wireless sensor networking. We will start with a discussion of the WSN+ubiquitous computing vision and applications, and also discuss emergent/swarm behavior in distributed and networked systems. We will provide a tutorial on programming wireless sensor network applications in Tinyos. Finally, we will quickly cover protocols for MAC layer, Localization, Routing, Querying, and Tracking. Prerequisite: Consent of the instructor. On demand.
EE 752. Introduction to Autonomous Systems. 3 Credits.
Advanced topics in autonomous and intelligent mobile robots, with emphasis on planning algorithms and cooperative control. Robot kinematics, path and motion planning, formation strategies, cooperative rules and behaviors. The application of cooperative control spans from natural phenomena of groupings such as fish schools, bird flocks, deer herds, to engineering systems such as mobile sensing networks, vehicle platoon. Prerequisite: Consent of the instructor. On demand.
EE 998. Thesis. 1-6 Credits.
Repeatable to 9.00 credits.
EE 999. Dissertation Research. 1-12 Credits.
Dissertation research for Ph.D. EE students. Repeatable. F,S,SS.