Petroleum Engineering (PtrE)


Courses

PTRE 201. Introduction to Petroleum Engineering. 3 Credits.
Introducing students to the broad aspects of petroleum engineering. The student will gain an appreciation for exploration, discovery, and commercial recovery of oil and gas industry. Prerequisite: Petroleum Engineering major. Prerequisites or Corequisites: GEOL 101 or GEOE 210; all the prerequisites must be completed with a "C" or higher. S.

PTRE 201B. Introduction to Petroleum Engineering. 3 Credits.
Introducing students to the broad aspects of petroleum engineering. The student will gain an appreciation for exploration, discovery, and commercial recovery of oil and gas industry. S/U grading. S.

PTRE 301. Reservoir Rock Properties. 3 Credits.
Systematic theoretical and practical study of physical properties of petroleum reservoir rocks; lithology, porosity, relative and effective permeability, fluid saturations, capillary characteristics, compressibility, rock stress, and fluid-rock interaction. Prerequisites: PTRE 201, CHEM 121, MATH 165; all the prerequisites must be completed with a "C" or higher. F.

PTRE 301B. Reservoir Rock Properties. 3 Credits.
Systematic theoretical and practical study of physical properties of petroleum reservoir rocks; lithology, porosity, relative and effective permeability, fluid saturations, capillary characteristics, compressibility, rock stress, and fluid-rock interaction. S/U grading. F.

PTRE 311. Petroleum Fluid Properties. 3 Credits.
Phase behavior of naturally occurring hydrocarbon system; evaluation and correlation of physical properties of petroleum reservoir fluids under various conditions of temperature and pressure, including laboratory and empirical methods. Prerequisite: CHEM 121 all the prerequisites must be completed with a "C" or higher. Corequisite: ME 341. Prerequisite or Corequisite: PTRE 301. S.

PTRE 311B. Petroleum Fluid Properties. 3 Credits.
Phase behavior of naturally occurring hydrocarbon system; evaluation and correlation of physical properties of petroleum reservoir fluids under various conditions of temperature and pressure, including laboratory and empirical methods. S/U grading. S.

PTRE 361. Petroleum Engineering Laboratory I. 1 Credit.
To introduce the students to different lab equipment in order to measure physical properties of the reservoir rock. Prerequisite: PTRE 301; all the prerequisites must be completed with a "C" or higher. Corequisite: On-campus students must take PTRE 311. S.

PTRE 401. Well Logging. 3 Credits.
This course covers topics on methods of how to measure and interpret the physical and chemical properties of formation through the well logging tools. Prerequisites: PTRE 301 and GEOL 407; all the prerequisites must be completed with a "C" or higher. F.

PTRE 401B. Well Logging. 3 Credits.
This course covers topics on methods of how to measure and interpret the physical and chemical properties of formation through the well logging tools. S/U grading. F.

PTRE 405. Petroleum Eng. Economy and Law. 3 Credits.
Presenting the principals of asset management with emphasize on applications to the upstream oil and gas activities and discussing the legal aspects of petroleum exploration and production in the US and internationally. Prerequisites: PTRE 445 and PTRE 451. Corequisite: PTRE 421. F.

PTRE 405B. Petroleum Eng. Economy and Law. 3 Credits.
Presenting the principals of asset management with emphasize on applications to the upstream oil and gas activities and discussing the legal aspects of petroleum exploration and production in the US and internationally. S/U grading. F.

PTRE 411. Drilling Engineering. 3 Credits.
Concepts, processes, equipment, and engineering principals used to drill oil and gas wells and near-surface wells common in geotechnical, environmental, and water well applications. Prerequisites: ENGR 203, PTRE 311 and ME 306; all the prerequisites must be completed with a "C" or higher. F.

PTRE 411B. Drilling Engineering. 3 Credits.
Concepts, processes, equipment, and engineering principals used to drill oil and gas wells and near-surface wells common in geotechnical, environmental, and water well applications. S/U grading. F.

PTRE 421. Production Engineering. 3 Credits.
Design, evaluation, and optimization of petroleum production system using nodal analysis. Analysis and design of well flow systems, artificial lift systems, and surface separation/treating facilities. Prerequisites: PTRE 411, PTRE 431, and PTRE 451; all the prerequisites must be completed with a "C" or higher. F.

PTRE 421B. Production Engineering. 3 Credits.
Design, evaluation, and optimization of petroleum production system using nodal analysis. Analysis and design of well flow systems, artificial lift systems, and surface separation/treating facilities. S/U grading. F.

PTRE 431. Reservoir Engineering. 3 Credits.
Discussing general concepts in reservoir engineering, material balance equation for oil, gas, and water, determining reserves under different drive mechanisms, and fluid flow in different oil and gas reservoirs. Prerequisites: PTRE 311, PTRE 301, and ME 306; all the prerequisites must be completed with a "C" or higher. F.

PTRE 431B. Reservoir Engineering. 3 Credits.
Discussing general concepts in reservoir engineering, material balance equation for oil, gas, and water, determining reserves under different drive mechanisms, and fluid flow in different oil and gas reservoirs. S/U grading. F.

PTRE 441. Petroleum Evaluation & Management. 3 Credits.
Expected value and investment decision analysis, estimation of oil and gas reserves, measures of profitability, production, decline curve analysis, and oil and gas reserves evaluations. Prerequisites: PTRE 311, PTRE 431, PTRE 411, and PTRE 421. S.

PTRE 441B. Petroleum Evaluation & Management. 3 Credits.
Expected value and investment decision analysis, estimation of oil and gas reserves, measures of profitability, production, decline curve analysis, and oil and gas reserves evaluations. S/U grading. On demand.

PTRE 445. Well Testing. 3 Credits.
Well test analysis using type curve techniques, Material balance for oil and gas reservoirs, Water influx calculations, Immiscible displacement and fractional flow calculations, Well test analysis to estimate reservoir properties, Pseudo functions, Enhanced oil recovery. Prerequisite: PTRE 431 with a grade of C or higher. S.

PTRE 445B. Well Testing. 3 Credits.
Well test analysis using type curve techniques, Material balance for oil and gas reservoirs, Water influx calculations, Immiscible displacement and fractional flow calculations, Well test analysis to estimate reservoir properties, Pseudo functions, Enhanced oil recovery. S/U grading. S.

PTRE 451. Advanced Drilling Engineering. 3 Credits.
Advanced topics in drilling which are part of well construction will be covered in this course. The sequence of constructing a well will be discussed and practiced through class projects and assignments. Prerequisite: PTRE 411; all the prerequisites must be completed with a "C" or higher. S.

PTRE 451B. Advanced Drilling Engineering. 3 Credits.
Advanced topics in drilling which are part of well construction will be covered in this course. The sequence of constructing a well will be discussed and practiced through class projects and assignments. S/U grading. S.

PTRE 461. Natural Gas Engineering. 3 Credits.
Estimation of gas properties; gas field development and material balance analysis; study of production and reservoir characteristics of gas and gas-condensate reservoirs; design and optimization of well bore and surface facilities for separation, processing, transportation, and metering; gas hydrates. Prerequisites: PTRE 301, ME 306, ME 341, and PTRE 311. S.
PTRE 461B. Natural Gas Engineering. 3 Credits.
Estimation of gas properties; gas field development and material balance analysis; study of production and reservoir characteristics of gas and gas-condensate reservoirs; design and optimization of well bore and surface facilities for separation, processing, transportation, and metering; gas hydrates.
S/U grading. S.

PTRE 462. Petroleum Engineering Laboratory II. 1 Credit.
To introduce the students to different lab equipment in order to measure geomechanical properties of the rock and flow behavior of the reservoir fluid.
Prerequisites: PTRE 411, PTRE 421, and PTRE 465; all the prerequisites must be completed with a "C" or higher. S.

PTRE 465. Petroleum Geomechanics. 3 Credits.
A brief review of fundamental of rock mechanics. The major focus of the course will be on different applications of Geomechanics in Petroleum Eng with focus on wellbore instability. Prerequisites: PTRE 451 and PTRE 431; all the prerequisites must be completed with a "C" or higher. F.

PTRE 465B. Petroleum Geomechanics. 3 Credits.
A brief review of fundamental of rock mechanics. The major focus of the course will be on different applications of Geomechanics in Petroleum Eng with focus on wellbore instability. S/U grading. F.

PTRE 471. Numerical Reservoir Simulation. 3 Credits.
Use of mathematics and computer programs to solve reservoir flow problems. This course will discuss: Fundamental reservoir calculations, multiphase flow concepts, fluid displacement, fluid flow equations and discretization concepts, as well as history matching and reservoir performance forecast.
Prerequisites: PTRE 445 and MATH 266; all the pre-requisites must be completed with a C or higher. F.

PTRE 471B. Numerical Reservoir Simulation. 3 Credits.
Use of mathematics and computer programs to solve reservoir flow problems. This course will discuss: Fundamental reservoir calculations, multiphase flow concepts, fluid displacement, fluid flow equations and discretization concepts, as well as history matching and reservoir performance forecast. S/U grading. F.

PTRE 475. Well Completions. 3 Credits.
Introduction to well problems including causes and remediation; near wellbore formation damage mechanism, control and prevention; sand and water production mechanisms; control and management; scale deposition removal and prevention; corrosion control and prevention; principles and practices of well workover and intervention operations; an overview of production logging tools and their various applications including production log interpretation, familiarization with new technology and reservoir stimulation by fracturing with emphasis on design and estimation; stimulation to improve productivity.
Prerequisites: PTRE 421 and PTRE 451 with a grade of "C" or higher. S.

PTRE 475B. Well Completions. 3 Credits.
Introduction to well problems including causes and remediation; near wellbore formation damage mechanism, control and prevention; sand and water production mechanisms; control and management; scale deposition removal and prevention; corrosion control and prevention; principles and practices of well workover and intervention operations; an overview of production logging tools and their various applications including production log interpretation, familiarization with new technology and reservoir stimulation by fracturing with emphasis on design and estimation; stimulation to improve productivity. S/U grading. F.

PTRE 484. Research Design. 3 Credits.
This is a research design course in the Petroleum Engineering program. It includes: Defining the design problem, establishing design objectives as well as design proposal, evaluating alternatives, specifying constraints, determining a methodology, and giving oral presentations on the research findings.
Prerequisites: PTRE 401, PTRE 451, and PTRE 445; all prerequisites must be completed with a "C" or higher. F.

PTRE 485. Senior Design. 3 Credits.
This is a capstone design course in the Petroleum Engineering program. It includes: Defining the design problem, establishing design objectives, evaluating alternatives, specifying constraints, determining a methodology, and completing a formal design problem statements.
Prerequisites: PTRE 484, PTRE 405 or ENGR 460, PTRE 465, and PTRE 471; all prerequisites must be completed with a "C" or higher. S.

PTRE 493. Selected Topics in Petroleum Engineering. 1-4 Credits.
Detailed study of selected topics in Petroleum Engineering. Includes laboratory if applicable. Repeatable up to a maximum of 6 credits. Prerequisite: Consent of the instructor. Repeatable to 6 credits. On demand.