Mechanical Engineering (ME)

B.S. in Mechanical Engineering (http://und-public.courseleaf.com/undergraduateacademicinformation/departmentalcoursesprograms/mechanicalengineering/me-bs)

Courses

ME 101. Introduction to Mechanical Engineering. 3 Credits.
This course encourages the development of visualization, technical communication, documentation, and fabrication skills including 3-D geometric modeling as applied to CADD applications using current methods and techniques commonly found in industry. Students will receive an introduction to engineering design and the analysis of a machine or system, including team problem solving. Approximately two-thirds of the course is classroom-based instruction and one third is laboratory (computer lab and/or shop) instruction and experimentation. Prerequisites: Mechanical Engineering major. F,S.

ME 102. Professional Assessment and Evaluation. 1 Credit.
This course is designed for students with industrial experience. Students complete a portfolio documenting educational and work experiences for evaluation, and individualized curriculum plans are developed. Various cademic programs in engineering are also introduced. Based on the assessment and evaluation, some engineering requirements may be waived. S/U grading only. Prerequisites: Work experience and/or technician school training plus completion of CHEM 121, CHEM 121L, PHYS 251, PHYS 252, MATH 165, MATH 166, and MATH 265. S/U grading. F,S,SS.

ME 201. Student Design. 2 Credits.
Team problem solving with design and build of a machine or mechanism, typically ASME Design Contest project. Machine shop safety and introduction to fabrication processes. Special topic lectures on contemporary Mechanical Engineering issues and research activities. Prerequisite: ME 101 or ENGR 101. Corequisites: PHYS 251 or ENGR 201. F.

ME 290. Laboratory Problems. 1-3 Credits.
Laboratory investigations of interest to student and faculty. Repeatable to a maximum of 6 credits. Prerequisite: Consent of instructor. Repeatable to 6 credits. On demand.

ME 301. Materials Science. 3 Credits.
The theory of the structure of matter, the prediction and evaluation of engineering properties of materials. Prerequisites: CHEM 121 with a grade of C or better, PHYS 252 with a grade of C or better, and admission to the professional Mechanical Engineering program. F.

ME 306. Fluid Mechanics. 3 Credits.
Fluid properties; fluid statics and dynamics; transport theory and transport analogies; conservation of mass, energy, and momentum; dimensional analysis; boundary layer concepts; pipe flows; compressible flow; open channel flow. Prerequisites: PHYS 251 and MATH 265, both with a grade of C or better. F,S.

ME 313. Material Properties and Selection. 3 Credits.
Study of relationships between materials, manufacture and design of engineering component. Prerequisite: ME 301 and admission to the professional Mechanical Engineering program. On demand.

ME 322. Design of Machinery. 3 Credits.
Analytical study of motions, velocities, accelerations and forces for design of machine elements. Introduction to spatial mechanisms, robotics, and actuator selection. Prerequisites: ENGR 200 with a grade of C or better, ENGR 202 with a grade of C or better, and admission to the professional Mechanical Engineering program. F.

ME 323. Machine Component Design. 3 Credits.
Design of machine elements such as shafts, bearings, gears, clutches, springs, threaded components, and bolted, riveted, welded, and bonded joints. Stress and failure theory analyses of the implementation of machine components are covered. Prerequisites: ENGR 203 with a grade of C or better, ME 322, and admission to the professional Mechanical Engineering program. S.

ME 332L. Machine Component Design Laboratory. 1 Credit.
Application of design and analysis tools developed in the Machine Component Design course. Laboratory emphasizes creative design, analysis techniques, construction methods, and design report writing. Prerequisite: Admission to the professional Mechanical Engineering program. Corequisite: ME 323. S.

ME 341. Thermodynamics. 3 Credits.
Fundamental energy relationships applied to both closed and open systems. Determination of thermodynamic properties, first and second laws of thermodynamic processes and basic cycles. Prerequisites: PHYS 251 and MATH 166, both with a grade of C or better. F,S.

ME 342. Intermediate Thermodynamics. 3 Credits.
Power and refrigeration cycles. Exergy analysis, psychrometrics, reacting and non-reacting mixtures. Prerequisite: ME 341 with a grade of C or better and admission to the professional Mechanical Engineering program. On demand.

ME 370. Engineering Disasters and Ethics. 3 Credits.
Engineering disasters will be the basis for teaching an ethics course to engineering students. Starting with the premise that most people know the difference between right and wrong (this is not a course on criminal activity!), the course explores how engineers, in spite of their best intentions, sometimes create disastrous situations. The effect of cumulative adverse detail is difficult to teach except with case studies. Also explored is cost vs. safety trade-offs, the role of lawsuits, and government regulation. Prerequisites: Junior or Senior standing. F.

ME 388. Undergraduate Research in Mechanical Engineering. 3 Credits.
Students will conduct a supervised independent study in a research lab or as part of a design team culminating in a research report. Prerequisite: Approval from department chair and faculty sponsor. S.

ME 397. Cooperative Education. 1-2 Credits.
A practical work experience with an employer closely associated with the student’s academic area. Arranged by mutual agreement among student, department and employer. Repeatable to 12 credits. Prerequisite: Admission to the professional Mechanical Engineering program. Repeatable to 12 credits. S/U grading. F,S,SS.

ME 418. Manufacturing Processes. 4 Credits.
Descriptive and analytical study of manufacturing methods and economics as they pertain to machining, metrology and automation. Includes laboratory. Prerequisites: ENGR 203 with a grade of C or better, ME 301, and admission to the professional Mechanical Engineering program. S.

ME 420. Composite Materials. 3 Credits.
Prerequisites: ME 301 and admission to the professional Mechanical Engineering program. On demand.

ME 424. Systems Dynamics and Control. 3 Credits.
Theory, analysis, and design of linear closed-loop control systems containing electronic, hydraulic, and mechanical components. Differential equations. Laplace transforms, Nyquist and Bode diagrams are covered. Prerequisites: MATH 266, ME 322, and admission to the professional Mechanical Engineering program. On demand.

ME 425. Numerical Methods for Engineers Using Advanced MATLAB Programming Techniques. 3 Credits.
In this course, numerical methods for solving differential equations, advanced Matlab programming techniques and their applications to practical engineering problems will be presented. Topics covered include Matlab programming, solving systems of equations, linear algebra, function and data manipulation, and differential equations. For students who enroll for graduate credit, they will apply class concepts to solve an engineering problem related to their research problems as a course project. Prerequisites: ENGR 200, MATH 266, and admission to PDP. S.

ME 426. Mechanical Vibrations. 3 Credits.
Vibration analysis and design as it applies to single and multi degree freedom mechanical systems, isolation and absorption of vibration, vibration of continuous systems, numerical methods of solution. Prerequisites: ENGR 202 with a grade of C or better, MATH 266, and admission to the professional Mechanical Engineering program. S.

ME 428. Advanced Manufacturing Processes. 3 Credits.
Individual projects involving the manufacturing economics and flow charts for selected products and basic technical principles of manufacturing processes. Includes laboratory. Prerequisites: ME 418 and admission to the professional Mechanical Engineering program. On demand.
ME 429. Introduction to Finite Element Analysis. 3 Credits.
Finite element analysis is introduced as a design tool. Emphasis is given to modeling techniques and element types. Matrix methods are used throughout the class. Prerequisites: ENGR 203 with a grade of C and admission to the professional Mechanical Engineering program. On demand.

ME 439. Introduction to Robotics. 3 Credits.
A systems engineering approach to robotics. Presents an introduction to manipulators, sensors, actuators, and end effectors for automation. Topics covered include kinematics, dynamics, control, programming of manipulators, pattern recognition, and computer vision. Prerequisites: ENGR 200 with a grade of C or better, MATH 166 with a grade of C or better, and admission to the professional Mechanical Engineering program. On demand.

ME 446. Gas Turbines. 3 Credits.
General principles, thermodynamics, and performance of gas turbine engines. Design consideration of engine components. Prerequisites: ME 341 with a grade of C or better and admission to the professional Mechanical Engineering program. On demand.

ME 449. Internal Combustion Engines. 3 Credits.
Fundamentals of spark ignition and compression ignition engines, related components and processes. Prerequisites: ME 342 and admission to the professional Mechanical Engineering program. On demand.

ME 451. Heating and Air Conditioning. 3 Credits.
Psychrometrics, heating and cooling loads and analysis of air conditioning systems. Prerequisites: ME 342 and admission to the professional Mechanical Engineering program or consent of instructor. Corequisite: ME 474. On demand.

ME 464. Computational Fluid Dynamics. 3 Credits.
Provides a practical experience using computational fluid dynamics and provides supporting material in fluid dynamics, which is useful in understanding the need to resolve grids in boundary layers and other regions of high velocity gradients. The course is structured as half lecture and half laboratory. The lecture covers topics related to laminar and turbulence boundary layers with and without separation, boundary layer development, and turbulent boundary layer development. The laboratory provides experience in building grids using the program GAMBIT, the solid/fluid modeling and meshing program, and calculating solutions using FLUENT, a commercial flow solver. Prerequisites: ME 306, MATH 266, and admission to the professional Mechanical Engineering program. On demand.

ME 466. Aerodynamics. 3 Credits.
ME 466 Aerodynamics is an introductory course on the fundamentals of aerodynamics for engineers. The class will cover a review of fluid mechanics including some boundary layers and compressible flow. The course topics include parameters for airfoil and wings, incompressible flow over airfoils and wings of infinite and finite span, compressible and transonic flow over wings and aircraft, supersonic flow over thin airfoils, and supersonic flow over wings and airplane configurations. The course will follow a standard text "Aerodynamics for Engineers," 6th Edition by Bertin and Cummings. The course will quality as either a thermal fluid science elective or an aerospace concentration elective. Prerequisites: ME 306 and ME 341. S, odd years.

ME 474. Fundamentals of Heat and Mass Transfer. 3 Credits.
Convection, conduction, radiation, dimensional analysis and design of heat transfer equipment. Prerequisites: MATH 266, ME 306, ME 341 with a grade of C or better, and admission to the professional Mechanical Engineering program. S.

ME 476. Intermediate Fluid Mechanics. 3 Credits.

ME 477. Compressible Fluid Flow. 3 Credits.
Introduction to the theory and application of one-dimensional compressible flow. Course topics include isentropic flow in converging and diverging nozzles, normal shock waves, oblique shock waves, Prandtl-Meyer flow, flow with friction and heat addition. Prerequisite: Admission to the professional Mechanical Engineering program. Prerequisites or Corequisites: ME 341 with a grade of C or better and ME 306. On demand.

ME 480. Mechanical Engineering Seminar. 3 Credits.
Reports and presentations on current developments in mechanical engineering and engineering ethics. Prerequisites: Senior Standing and admission to the professional Mechanical Engineering program. F.

ME 483. Mechanical Measurements Laboratory. 3 Credits.
Experiments and written reports on the operation and performance of instruments and basic mechanical engineering equipment. Prerequisites: ENGR 206 and admission to the professional Mechanical Engineering program. F.

ME 484. Ground Vehicle Dynamics. 3 Credits.
ME 484 is a junior and senior level elective course. This course deals with the design of ground vehicle suspension and steering systems. Vehicle ride, handling and safety systems are covered along with passive and active suspension control. Prerequisite: ME 322 and admission to the professional Mechanical Engineering program or consent of instructor. On demand.

ME 485. Multiphysics Modeling. 3 Credits.
Theory and techniques of modeling coupled thermal, fluid, mechanical, and/or electrical fields in components design. The focus is on the fundamental techniques used to simultaneously derive and solve coupled equations and the use of commercial multi physics finite element software. Prerequisite: ME 323. S.

ME 487. Engineering Design. 2 Credits.
The first course of a two-course sequence in Engineering Design, students will establish important features of the machine or system, perform market analysis, establish design objectives, explore alternatives, conduct research, specify constraints. Prerequisites: ME 323, ME 323L ME 474 or any one elective from the thermal science group, and admission to the professional Mechanical Engineering program. Corequisite: ME 483. Prerequisite or Corequisite: ENGR 460. F.

ME 488. Engineering Design. 3 Credits.
Systematic study and practice essential to the optimal design of a complete machine or system, utilizing economic and social constraints together with current mechanical and thermal design techniques. The course is a continuation of ME 487 taken the preceding semester. Prerequisites: ME 487 and admission to the professional Mechanical Engineering program. S.

ME 489. Senior Honors Thesis. 1-8 Credits.
Supervised independent study culminating in a thesis. Repeatable to 9 credits. Prerequisites: Consent of the Department, approval of the Honors Committee, and admission to the professional Mechanical Engineering program. Repeatable to 9 credits. F,S.

ME 490. Special Laboratory Problems. 1-3 Credits.
Laboratory investigations of interest to students and faculty. Repeatable to maximum of 6 credits. Prerequisites: Consent of instructor and admission to the professional Mechanical Engineering program. Repeatable to 6 credits. On demand.