Atmospheric Sciences

M.S. in Atmospheric Sciences (http://und-public.courseleaf.com/graduateacademicinformation/departmentalcoursesprograms/atmosphericsciences/atsc-ms)

Ph.D. in Atmospheric Sciences (http://und-public.courseleaf.com/graduateacademicinformation/departmentalcoursesprograms/atmosphericsciences/atsc-phd)

Courses

ATSC 500. Introduction to Atmospheric Research. 1 Credit.
This course is required for all Atmospheric Science graduate students. A course in the methodology and philosophy of doing research in the atmospheric sciences. Also includes discussion of related topics, including creativity, publication, science and society, and career-related activities. S/U grading.

ATSC 505. Advanced Atmospheric Dynamics. 4 Credits.
A graduate level course in linear perturbation theory, atmospheric oscillations, hydrodynamic instability and the life cycle of extratropical cyclones. F.

ATSC 510. General Circulation. 3 Credits.
Covers the large scale dynamical processes in the atmosphere, including the observed circulation, processes that maintain the circulation, mid-latitude wintertime circulation anomalies, large scale structure of the tropical atmosphere, and the stratosphere and its link to the troposphere. Prerequisite: ATSC 505.

ATSC 515. Advanced Climatology. 3 Credits.
A course on climate from the perspective of utilizing climatic knowledge and information to examine the current state of the climate and how this can be used to explore potential future states. Topics included are an introduction to climatology, basic data and their analysis, climatological analysis, statistical methods, applications and synoptic climatology. Prerequisite: ATSC 540.

ATSC 518. Advanced Synoptic Meteorology. 3 Credits.
Advanced analysis of atmospheric processes important to large-scale flows. Quasigeostrophic and semi-geostrophic theory, behavior of extratropical systems, fronts and jets, geotrophic adjustment, blocking and IPV thinking. Prerequisite: ATSC 505 or equivalent.

ATSC 520. Atmospheric Chemistry. 3 Credits.
Composition of clean and polluted air. Sources and sinks of atmospheric gases and aerosols. The role of atmospheric chemistry in global environmental issues such as acid rain, visibility reduction, climatic change, oxidant enhancement, etc.

ATSC 525. Atmospheric Radiation. 3 Credits.

ATSC 528. Atmospheric Data Analysis. 3 Credits.
Introduction to techniques used in the analysis of meteorological data and methods for interpreting their effects: polynomial fitting, method of successive corrections, statistical methods, variational techniques, model initialization, data assimilation, and filter design. Prerequisite: Proficiency in a programming language.

ATSC 530. Numerical Weather Prediction. 3 Credits.
Covers scale analysis in atmospheric prediction; numerical methods; various atmospheric prediction models; the use of filtering, smoothing, interpolation, weighting and adjustment in objective analysis techniques; numerical forecasting; current NWP structures and applications. Prerequisite: ATSC 505.

ATSC 532. Cloud Microphysics Parameterization & Simulation. 3 Credits.
A study of how cloud microphysics processes are parameterized within weather models. Includes a review of the theoretical basis of cloud physics processes, hands-on examination of the parameterization assumptions and their impacts, and analysis and display of model output. Course offered every four years. On demand.

ATSC 535. Measurement Systems. 3 Credits.
An advanced course in meteorological measurement systems, including coverage of performance characteristics of sensors, calibration standards, measuring devices, the effects of making measurements in the atmospheric environment, meteorological measurement systems, and digital data logging and processing.

ATSC 538. Advanced Earth System Sciences. 3 Credits.
Introduction and synthesis of understanding of the components of the Earth system, their interactions, and the consequences of changes in the Earth system for life; identify and quantify Sun-Earth connections associated with solar variability and impact on the Earth System; explore interactions among the major components of the Earth system: continents, oceans, atmosphere, ice, and life; distinguish natural from human-induced causes of change; understand and predict the consequences of change; and consider analysis techniques, with emphasis placed on numerical modeling of phenomena. Prerequisite: Permission of instructor.

ATSC 540. Statistical Methods in Atmospheric Science. 3 Credits.
A course on statistical methods used to describe, analyze, test, and predict atmospheric phenomena. The topics will review basic statistical concepts, statistical data interpretation, theoretical probability distributions, hypothesis testing, uncertainty analysis, regression, time series analysis, and statistical weather prediction and verification. Prerequisite: Must have completed course work in statistics or consent of instructor.

ATSC 545. Hydrometeorology. 3 Credits.
A course designed to study the coupling of atmospheric and hydrologic processes. Topics will cover basic hydrologic concepts, review of atmospheric thermodynamics, atmospheric moisture, precipitation processes, hydrologic cycle, evaporation/evapotranspiration, infiltration, snow and snowmelt processes, runoff mechanisms, land surface processes, and hydrologic modeling.

ATSC 548. Advanced Mesoscale Dynamics. 3 Credits.
An in-depth theoretical and analytical examination of mesoscale convective processes, initiation and characteristics; mesoscale features of tropical systems; geographically-forced and -influenced circulation; local and regional circulation; high-latitude mesoscale systems; an introduction to mesoscale model design, parameterization development, and evaluation. Prerequisite: Upper division or graduate course in dynamics or consent of instructor; ATSC 505 is a recommended corequisite but not required.

ATSC 550. Tropical Meteorology. 3 Credits.
A study of tropical phenomena over a range of scales, including small scale (cumulus clouds, thunderstorms), mesoscale (sea breezes, squall lines), large scale (waves and cyclones), and planetary scale circulation (trade winds, equatorial trough, equatorial waves, monsoons, intraseasonal oscillations, ENSO). Methods for obtaining and using information to study tropical phenomena are examined. Prerequisite: Graduate standing.

ATSC 552. Satellite Meteorology. 3 Credits.
A study of remote sensing technologies for atmospheric applications. Topics include basic radiation and remote sensing methods, image data processing, atmospheric and geometric corrections, radiometric and geometric enhancements, image classification, and selected meteorological applications using satellite remote sensing. S, even years.

ATSC 553. Advanced Satellite Meteorology. 3 Credits.
Addresses advanced topics in satellite meteorology. Includes advanced topics in radiation, scattering by molecules and particles, and retrieval theory and methods for meteorological applications using passive and active satellite remote sensing. Prerequisites: ATSC 552 and ATSC 525. F, even years.

ATSC 555. Advanced Surface Transportation Weather. 3 Credits.
Addresses weather research topics in contemporary surface transportation. Includes maintenance decision support systems construction, applications of artificial intelligence methods, and investigation of land surface effects and applications of advanced mesoscale weather prediction modeling in a surface transportation environment. Prerequisite: ATSC 510 or consent of instructor.

ATSC 560. Boundary Layer Meteorology. 3 Credits.
The interaction of the atmosphere with the earth's surface. The transfer of heat, moisture, and momentum between the atmosphere and the underlying surface. The description of turbulence and the effects of turbulence on the transfer properties of the atmosphere. Prerequisite: ATSC 505.

ATSC 565. Air Quality. 3 Credits.
An in-depth introduction to important areas within the air quality field. Topics covered include the physical and chemical nature of air pollutants; their sources, control, and transport through the atmosphere; their interaction with other atmospheric constituents; their removal through cloud processes, fallout and wet deposition; their effects on visibility, human health, ecosystems, and global climate. Methods related to the measurements of atmospheric pollutants, air quality modeling, and air quality forecasting are discussed. Prerequisites: CHEM 121 or equivalent, and PHYS 251 or equivalent.
ATSC 570. Seminar. 1 Credit.
A discussion course on current research topics and publications related to the field of atmospheric sciences. Students, faculty and guest speakers will present their research and lead the discussion during seminar. Repeatable to 3 credits. Repeatable to 3 credits. S/U grading.

ATSC 575. Current/Special Topics in Meteorology. 3 Credits.
A course in specific advanced topics in atmospheric sciences. Largely delivered in a structured, lecture format. Repeatable to 12 credits. Repeatable to 12 credits.

ATSC 594. Independent Studies. 2-4 Credits.
Survey investigations, literature searches and/or preliminary research topic of interest to the student. Repeatable to 4 credits. Repeatable to 4 credits.

ATSC 596. Supervised Research. 1-4 Credits.
Research in consultation with departmental faculty. Repeatable to 12 credits. Prerequisites: Master's degree student and consent of the instructor. Repeatable to 12 credits. S/U grading.

ATSC 598. Dissertation Research. 1-8 Credits.
Research, in support of the doctoral dissertation, performed in consultation with the student's advisor. Repeatable to 15 credits. Prerequisite: Consent of the instructor. Repeatable to 15 credits. S/U grading.

ATSC 996. Continuing Enrollment. 1-12 Credits.
Repeatable. S/U grading.

This course is required for all Atmospheric Science graduate students enrolled in the non-thesis option. Students will be required to independently investigate a topic related to the major field. This study need not be an original contribution to knowledge, but may be a presentation, analysis, and discussion of ideas already in the literature of the field. Prerequisite: Students are required to complete at least one course from each of the core areas: dynamics, physical, earth system, and tools, as well as ATSC 500. S/U grading. F,S,SS.

ATSC 998. Thesis. 1-6 Credits.
Repeatable to 9 credits. Repeatable to 9 credits.

ATSC 999. Dissertation. 1-9 Credits.
Repeatable to 18 credits. Repeatable to 18 credits.

Undergraduate Courses for Graduate Credit

ATSC 441. Radar Meteorology. 4 Credits.
Advanced radar theory, including basic radar principles, digital processing of radar signals, Doppler radar principles, displays, polarization techniques, and characteristic returns. Includes laboratory. Prerequisite: ATSC 345 or consent of instructor. S, odd years.

ATSC 450. Introduction to Cloud Physics Meteorology. 4 Credits.
A study of the physics of clouds with emphasis on microphysical processes involved in cloud formation, precipitation production, and dissipation. Includes Laboratory. Prerequisites: ATSC 350 and ATSC 353. F, odd years.